
+ Models

www.elsevier.com/locate/asoc

Applied Soft Computing xxx (2006) xxx–xxx
Text classification: A least square support vector machine approach

Vikramjit Mitra a, Chia-Jiu Wang b,*, Satarupa Banerjee c

a ECE Department, University of Maryland, College Park, MD, United States
b ECE Department, University of Colorado Colorado Springs, CO, United States

c CS Department Villanova University Villanova, PA, United States

Received 12 April 2004; received in revised form 1 March 2006; accepted 2 April 2006
Abstract
This paper presents a least square support vector machine (LS-SVM) that performs text classification of noisy document titles according to

different predetermined categories. The system’s potential is demonstrated with a corpus of 91,229 words from University of Denver’s Penrose

Library catalogue. The classification accuracy of the proposed LS-SVM based system is found to be over 99.9%. The final classifier is an LS-SVM

array with Gaussian radial basis function (GRBF) kernel, which uses the coefficients generated by the latent semantic indexing algorithm for

classification of the text titles. These coefficients are also used to generate the confidence factors for the inference engine that present the final

decision of the entire classifier. The system is also compared with a K-nearest neighbor (KNN) and Naı̈ve Bayes (NB) classifier and the comparison

clearly claims that the proposed LS-SVM based architecture outperforms the KNN and NB based system. The comparison between the

conventional linear SVM based classifiers and neural network based classifying agents shows that the LS-SVM with LSI based classifying agents

improves text categorization performance significantly and holds a lot of potential for developing robust learning based agents for text

classification.

2006 Elsevier B.V. All rights reserved.

Keywords: Least square support vector machines; Latent semantic indexing; Text classification; Kernel based learning algorithms
1. Introduction

Rapid advancement in technology has motivated text

documents to be available in electronic form. The World Wide

Web itself contains a huge amount of documents, conference

materials, publications, journals, editorials, news and informa-

tion etc., available in electronic form. These materials along

with others result in enormous amount of easily available

information, which lack organization. The lack of organization

of materials in the World Wide Web necessitates a growing

interest in assisting people to manage the huge amount of

information. Organized search, browsing, information routing,

filtering, objectionable material identification, junk mail, topic

identification etc., are the central issues in current information

management efforts. This requires implementation of sophis-

ticated learning agents that are capable of classifying relevant

information and hence increases text organization. Previous

research in the field of Internet agents has used manual or
* Corresponding author. Tel.: +1 719 262 3495; fax: +1 719 262 3589.

E-mail addresses: vmitra@umd.edu (V. Mitra), cwang@eas.uccs.edu

(C.-J. Wang), satarupa.banerjee@villanova.edu (S. Banerjee).

1568-4946/$ – see front matter # 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.asoc.2006.04.002
simple encoding techniques [1], linear SVMs and neural

network [2] based intelligent agents for information retrieval.

Text classification (TC) is a text content-based classification

technique that assigns texts to some predefined categories [3–

5,19,27]. The key issues in TC are feature encoding and classifier

design, tuning and implementation. Feature extraction is a

method of document encoding; that automatically construct

internal representations of documents. This paper aims to

organize the materials available in a library, which has both

electronic materials as well as physical documents. A library

cataloging system usually stores the entire information regarding

a material, which results in higher storage space requirement.

This paper presents an analysis of learning agents based on

support vector machines (SVM). In particular least square

support vector machine (LS-SVM) [13] with latent semantic

indexing (LSI) for feature extraction will be explored.

Furthermore the details of the internal structure of the classifying

agent along with the results obtained from our research are

presented. The results obtained from the LS-SVM based

classifier will be compared with K-Nearest Neighbor (KNN)

and Naı̈ve Bayesian (NB) based classifier, which claims the

potential and pertinence of using LS-SVMs as the intelligent

classifying and search agents for semantic text classification.
ASOC-254; No of Pages 7

mailto:vmitra@umd.edu
mailto:cwang@eas.uccs.edu
mailto:satarupa.banerjee@villanova.edu
http://dx.doi.org/10.1016/j.asoc.2006.04.002

V. Mitra et al. / Applied Soft Computing xxx (2006) xxx–xxx2

+ Models
2. Latent semantic indexing

Latent semantic indexing commonly known as LSI [3–6] is a

text classification and document indexing technique that

generates a vector model of semantics based upon word co-

occurrences. Using the estimate of the most significant

statistical factors in the weighted word space, LSI [5,6]

extracts the underlying semantic structure of a word corpus.

LSI considers documents that have many words in common to

be semantically close and those with few words in common to

be semantically distant. This method emulates human knowl-

edge to classify and categorize a document collection based on

its content. LSI search agents look at similarity values it has

calculated for every content word, and returns the documents

that it thinks best fit the query [4]. This makes LSI successful

where a plain keyword search will fail if there is no exact

match. At the initial stage, LSI preprocesses the text corpus by

purging all the extraneous words from a document [4,5],

leaving only content words that have some semantic meaning.

This way it eliminates those words that introduces noise to the

decision making task.

LSI algorithm generates a matrix representation of the

corpus, with rows corresponding to words in the vocabulary and

columns to the documents. Each value in this matrix is a

weighted frequency of the corresponding term in the

corresponding document, which reduces the influence of

frequently occurring term [7]. The matrix thus generated is

large sparse one, which is then reduced to a compressed matrix

based on singular value decomposition (SVD) technique, given

in (1):

R ¼ UPV (1)

where the matrix R is decomposed into a matrix of reduced rank

U, a diagonal matrix of singular values P and a document

matrix V. The row vector of matrix U and the column vector of

matrix V are the projections of word vectors and document

vectors into singular value space.

3. Support vector machines (SVM)

The general form of support vector machine is used to

separate two classes by a function, which is induced from

available examples [8,15]. The main goal of this classifier is to

find an optimal separating hyperplane that maximizes the

separation margin or the distance between it and the nearest

data point of each class. For a set of training vectors belonging

to two separate classes, shown in (2):

fðx1; y1Þ; . . . ; ðxm; ymÞg; x2Rn; y2f1;�1g (2)

A hyperplane as shown in Eq. (3) can be found to separate

these two classes:

hw; xi þ b ¼ 0 (3)

The above set of vectors is said to be optimally separated by

the hyperplane if it is separated without error and the distance

between the closest vector to the hyper plane is maximal.
Vapnik [15,8] introduced a canonical hyperplane, where the

parameters w, b are constrained by Eq. (4):

min
i
jhw; xii þ bj ¼ 1 (4)

From the above set of equations, it can be derived that the

optimal separating hyperplane given by:

w� ¼
Xl

i¼1

aiyixi (5)

b� ¼ �0:5hw�; xr þ xsi (6)

where ai is the Lagrange multiplier. xr and xs are any support

vectors from each class satisfying ar > 0, yr = �1; as > 0,

ys = 1.

3.1. Kernel functions

In the case where a linear boundary is inappropriate the

SVM can map the input vector, x, into a high dimensional

feature space, z [8]. By selecting the non-linear mapping as a

priori, the SVM constructs an optimal separating hyperplane in

this higher dimensional space. This idea exploits the method of

Aizerman et al. (1964), which enables the curse of

dimensionality (Bellman, 1961) to be addressed. The idea of

kernel function is to enable operations to be performed in the

input space rather than the potentially high dimensional feature

space. Due to this the inner product does not need to be

evaluated in the feature space, which provides a way of

addressing the curse of dimensionality.

The theory of Reproducing Kernel Hilbert Space (RKHS)

(Wahba, 1990; Aronszajn, 1950; Girosi, 1997; Heckman,

1997), claims that an inner product in feature space has an

equivalent Kernel in input space:

Kðx; x0Þ ¼ hfðxÞ;fðx0Þi (7)

provided certain conditions hold. The Gaussian radial basis

function (GRBF) has received significant attention and its form

is given by:

Kðx; x0Þ ¼ e�kx�x0k2=2s2

(8)

Classical techniques utilizing RBFs employ some method of

determining a subset of centers; typically a method of

clustering is employed to select a subset of centers [8]. The

most attractive feature of SVM is its implicit selection process,

with each support vectors contributing on local Gaussian

functions, centered at that data point. By further consideration it

is possible to select the global basis function width using the

SRM principle (Vapnik, 1995).

3.2. Least square-SVM

SVM is a powerful technique for solving problems in

non-linear classification, function estimation and density

estimation, which had led to many recent developments in

kernel based learning methods [9,11,12,16,15]. Least square

support vector machines (LS-SVM) are reformulations to

V. Mitra et al. / Applied Soft Computing xxx (2006) xxx–xxx 3

+ Models
standard SVMs [13,14]. LS-SVMs are closely related to

regularization networks [10] and Gaussian processes [17]

but additionally emphasize and exploit primal-dual inter-

pretations.

3.3. Why LS-SVM with LSI?

Kernel based learning Methods are highly sophisticated

learning algorithms whose ideal example is SVM [18,9]. In

SVM approach, items are mapped to high dimensional

spaces, where information about their mutual positions is

used for classification, regression or clustering. These

systems work with high accuracy in text categorization,

since the documents are usually represented by very high

dimensional vectors and the standard information retrieval

techniques are based on the inner product of the vectors.

Joachims [19,27] has proved the suitability of SVM for text

classification. This paper incorporates the LSI technique with

LS-SVMs in order to incorporate more information in the

kernel. SVM based systems were found to suffer during

information retrieval [18], as the semantic relations between

the data terms are not considered. Titles that have related

topics but use different terms are mapped to distant regions in

feature space. LSI enables the system to capture the semantic

information and hence establishes the similarity between two

titles by considering the relation between two terms. LS-SVM

is well known to solve optimization problems with high

accuracy. Because of these advantages an LSI based LSSVM

architecture is selected for the text classification (TC)

purpose. This paper uses document titles, instead of the

entire document, mainly because of two reasons: (1) this

paper addresses classification task for documents in a Library

system, where the document information is mainly present in

terms of the document title, ISBN number, document

barcode, author name, publisher information etc. As apart

from the document title none of the other information is

relevant for the purpose of semantic classification, hence only

the document title has been selected for this case. (2) The

proposed classifier is also aimed to perform real time data

classification, where classification based on a title will

obviously be faster than the classification based on the entire

document content.
Table 1

Example titles from the Corpus and their categories

Semantic category Title

Engineering (ENG) Randomized algorith

in time–frequency si

Mathematics (MTH) Stochastic processes

solving polynomial

Music (MUS) Unplayed melodies;

History (HIS) A history of the Osa

Germany since 1815

Economics and management (ECM) The economics of se

of enterprises; the n

Literature and arts (LAR) Rethinking social re

about multicultural l
3.4. K-nearest neighbor classification

K-nearest neighbor classification is a well-known statistical

approach that has been widely applied to text classification

since its inception [20,21]. The popularity of the algorithm is

due to its simplicity. The classifier finds the k nearest neighbors

of the test document, and then uses majority voting among the

neighbors in order to decide the test document category.

Similarity between two documents is measured by the cosine

between the vectors representing the corresponding documents.

If a specific category is shared by more than one of the K-

neighbors, then the sum of the similarity scores of those

neighbors is obtained from the weight of that particular shared

category.

3.5. Naı̈ve Bayes classifier

Naı̈ve Bayes (NB) classifier is a probabilistic classifier that

has been used extensively for the purpose of document

classification [22]. NB classifier uses the joint probabilities of

words and their categories to estimate the probabilities of

categories given a test document using the celebrated Bayes

rule. The naı̈ve part in this classification algorithm is the

assumption of word independence, which can be stated as, the

probability of a word, given a category is independent from the

conditional probabilities of other words given that same

category; i.e. it does not use word combinations as predictors.

The naı̈ve assumption helps in saving computation time to a

great extent [23,24].

4. Text classification

The Penrose library document collection contains real-world

titles that are present in their cataloging system. All the titles in

this word corpus belong to one or more of the six main

categories: engineering (ENG), mathematics (MTH), music

(MUS), history (HIS), economics and management (ECM) and

literature and arts (LAR). Table 1 shows example titles from the

Corpus and their categories. Eleven thousand eight hundred and

ninety two titles were used for this experiment and each of them

belongs to at least one of the above-mentioned categories. The

total number of words used is 91,229, with 12,303 different
ms for analysis and control of uncertain systems; applications

gnal processing; nanoelectro-mechanics in engineering and biology

with applications to finance; practical extrapolation methods;

equation systems

the music of European nationalism; elements of music

ge people; a history of modern

Shivaji; Hindu King in Islamic India

lf-employment and entrepreneurship; ownership and governance

ew knowledge management

alism: African American art and literature, 1930–1953; teaching and learning

iterature; literary texts and the arts: interdisciplinary perspectives

V. Mitra et al. / Applied Soft Computing xxx (2006) xxx–xxx4

+ Models

Fig. 1. Block diagram of the LS-SVM text classifier.

Table 2

LS-SVM parameter values

Parameters (for tuning) Parameter values

Optimization routine Gridsearch

Cost function Crossvalidate

g (SVM-1) 1.23791

s2 (SVM-1) 12.1539

g (SVM-2) 0.0444

s2 (SVM-2) 1.1728

g (SVM-3) 0.6726

s2 (SVM-3) 0.3818

g (SVM-4) 0.5342

s2 (SVM-4) 0.2466

g (SVM-5) 0.0324

s2 (SVM-5) 0.1568
words. The first 482 titles from each category, which is 2892

titles altogether, were used for training the LS-SVM module.

The remaining 9000 titles were used for the testing purpose.

LSI is used to represent the title corpus as semantic

significant vectors ‘V’, which determines the frequency of word

occurrences in different semantic categories. Each word ‘a’ is

represented with a vector:

½Vða; b1Þ;Vða; b2Þ; . . . ;Vða; bnÞ�

where bi represents a certain semantic category. Avalue V(a, bi)

is computed for each dimension of the semantic vector as the

normalized frequency of occurrences of word ‘a’ in semantic

category bi divided by the normalized frequency of occurrences

of word ‘a’ in the Corpus. Hence, the vectors V represent the

plausibility of a word ‘a’ occurring in a particular semantic

category ‘b’. These vectors ‘V’ for each word ‘a’ together form

the matrix R, which is a large sparse matrix due to the large

number of words. R is then reduced to a compressed matrix

based on singular value decomposition (SVD) technique, which

generates the LSI coefficients; these coefficients are then fed to

the SVM module.

From the model depicted in Fig. 1, it can be observed that at

the beginning, the system starts with a text string. The word

separator module separates each word from that string and

feeds them one by one to the LSI module. LSI purges most of

the extraneous words that have no semantic meaning and hence

contributes little or nothing towards semantic categorization.

Then LSI uses a stemming algorithm named ‘Porter Stemmer’

to remove common endings from the words. These words are

further processed by the LSI algorithm to generate the LSI

coefficients which are fed to five LS-SVM modules as shown in

Fig. 1. Each of the first four LS-SVM module, classifies

between one category and the rest, where as the last one

classifies between two categories. The conclusions drawn

by the LS-SVMs are then multiplied with the LSI coefficients
[V1, V2, V3, V4, V5, V6] that are used as confidence factors (CF)

to increase the accuracy of the inference engine (IE).

In order to make an LS-SVM model, two parameters are

required, g, the regularization parameter, which determines the

trade-off between the fitting error minimization and smooth-

ness. The other parameter is the s2, which is the Gaussian

bandwidth. The parameters are optimized by the use of

Bayesian framework, which uses the eigen value decomposi-

tion of the kernel matrix. With increase in number of data

points, the size of the kernel matrix increases and hence

approximation techniques [25] are used to handle large data

sets. It is also known [25] that the principal eigen values and

corresponding eigen vectors are relevant, hence iterative

approximation methods such as the Nyström method [25] is

used for approximation. Input selection is performed by using

automatic relevance determination (ARD) [26].

The regularization parameter, g, and the Gaussian band-

width parameter, s2, are inferred by optimizing the cost at the

initial levels of inference. The optimization of a cost function

with possibly multiple optimal points is performed by

V. Mitra et al. / Applied Soft Computing xxx (2006) xxx–xxx 5

+ Models

Table 3

Rule base for the decision logic

Categories Vectors

A1 A2 A3 A4 A5 A6

ENG 0.5 � A1 A2 < 0.5 A3 < 0.5 A4 < 0.5 A5 < 0.5 A6 < 0.5

MTH A1 < 0.5 0.5 � A2 A3 < 0.5 A4 < 0.5 A5 < 0.5 A6 < 0.5

MUS A1 < 0.5 A2 < 0.5 0.5 � A3 A4 < 0.5 A5 < 0.5 A6 < 0.5

HIS A1 < 0.5 A2 < 0.5 A3 < 0.5 0.5 � A4 A5 < 0.5 A6 < 0.5

ECM A1 < 0.5 A2 < 0.5 A3 < 0.5 A4 < 0.5 0.5 � A5 A6 < 0.5

LAR A1 < 0.5 A2 < 0.5 A3 < 0.5 A4 < 0.5 A5 < 0.5 0.5 � A6

No category A1 < 0.5 A2 < 0.5 A3 < 0.5 A4 < 0.5 A5 < 0.5 A6 < 0.5

Table 4

Results using LS-SVM for text classification

Category Training set (%) Test set (%)

ENG 100.0 100.0

MTH 100.0 100.0

HIS 100.0 99.8

MUS 100.0 99.9

ECM 100.0 100.0

LAR 99.7 99.6

All titles 99.95 99.90
evaluating a grid over the parameter space and then selecting

the minimum on that grid, which iteratively zooms into the

candidate optimum, where a priori starting values specify the

limits of the grid over parameter space. The optimization

process optimizes the posterior probabilities of the hyper

parameters with respect to the different Bayesian inference

levels. Before optimization of the parameters, the model was

initiated with appropriate starting values, where it optimizes the

support values and the bias. After that the system was tuned to

obtain the appropriate g and s2 values, which were used as the

initial values for a three stage Bayesian optimization, where the

Bayesian framework is initialized at the first stage, optimized g

value was obtained in the second stage and the optimized s2

value was obtained in the third stage. The parameter values

used are shown in Table 2.

The inference engine (IE) has a decision logic that uses a

rule-based algorithm. It accepts a vector of six values [A1, A2,

A3, A4, A5, A6] obtained by the product of the SVM decisions

and the confidence factors. It uses this vector to make the final

judgment. The rule base is given in Table 3. It should be noted

that the rule base in Table 3 gives inferences only for a limited

number of cases, as certain cases might arise where more than

one member of the vector, A, have values �0.5. In such a case

the decision will comprise all the weighted categories,

corresponding to which the vectors are �0.5. In the practical
Table 5

Different stages of the text classification module

Test categories LS-SVM (�CF) output

ENG MTH HIS MUS ECM LAR

ENG 1.0 0.0 0.0 0.0 0.0 0.0

0.7 0.0 0.2 0.0 0.0 0.0

MTH 0.0 1.0 0.0 0.0 0.0 0.0

0.0 0.9 0.0 0.0 0.0 0.0

HIS 0.0 0.0 0.9 0.0 0.0 0.0

0.0 0.0 0.9 0.0 0.0 0.1

MUS 0.0 0.0 0.0 0.7 0.0 0.3

0.0 0.2 0.1 0.8 0.0 0.0

ECM 0.0 0.0 0.0 0.0 0.9 0.0

0.0 0.1 0.0 0.0 0.9 0.0

LAR 0.0 0.0 0.0 0.2 0.0 0.7

0.0 0.0 0.2 0.0 0.0 0.8
research we have incorporated all the possible combination of

vector A for which the values are �0.5.

If all the elements of the vector A are less than 0.5, then the

decision logic infers ‘No Category’, as shown in the last row of

Table 3. Another intuitive way to construct the decision logic

would be to use the category of the vector element that has the

maximum value, however, in this particular way it was

observed that (1) the ‘No category’ case will never occur, (2) for

two elements of vector A having the same maximum value, will

result in unpredictable decision and finally and (3) due to lack

of threshold, unrelated or semantically distant titles, that should

belong to ‘No Category’ group will obtain a specific category,

even though it does not belong to that category remotely. To
Decision logic output Inference

ENG MTH HIS MUS ECM LAR

1.0 0.0 0.0 0.0 0.0 0.0 ENG

1.0 0.0 0.0 0.0 0.0 0.0 ENG

0.0 1.0 0.0 0.0 0.0 0.0 MTH

0.0 1.0 0.0 0.0 0.0 0.0 MTH

0.0 0.0 1.0 0.0 0.0 0.0 HIS

0.0 0.0 1.0 0.0 0.0 0.0 HIS

0.0 0.0 0.0 1.0 0.0 0.0 MUS

0.0 0.0 0.0 1.0 0.0 0.0 MUS

0.0 0.0 0.0 0.0 1.0 0.0 ECM

0.0 0.0 0.0 0.0 1.0 0.0 ECM

0.0 0.0 0.0 0.0 0.0 1.0 LAR

0.0 0.0 0.0 0.0 0.0 1.0 LAR

V. Mitra et al. / Applied Soft Computing xxx (2006) xxx–xxx6

+ Models

Table 6

Classification accuracy from LS-SVM, KNN and NB for the six different categories

Category LS-SVM KNN NB

Training set (%) Test set (%) Training set (%) Test set (%) Training set (%) Test set (%)

ENG 100.0 100.0 98.3 94.3 96.7 93.4

MTH 100.0 100.0 96.7 95.1 94.5 89.3

HIS 100.0 99.8 97.3 96.7 92.4 91.9

MUS 100.0 99.9 89.7 85.8 88.2 84.4

ECM 100.0 100.0 98.3 97.7 95.5 95.3

LAR 99.7 99.6 87.5 86.6 83.4 81.2

All titles 99.95 99.90 94.6 92.7 91.8 89.3
filter out these unwanted scenarios, the threshold based

decision logic has been implemented in this research.

5. Simulation results

In this study a six-input one-output system is considered, the

six inputs corresponding to the six LSI coefficients generated

after processing the text titles, where each coefficient gives the

membership value of that word to a certain category. The test

results are presented below in Tables 4 and 5. Table 4 depicts

the accuracy for text classification in different categories,

whereas Table 5 depicts the different stages of the classifying

module. The first group of six columns in Table 5 presents the

data obtained from the product of the SVM decision with the

confidence factors (CF), the next group of six columns gives the

decision logic output based on the rule base given in Table 2 ad

the last column gives the final decision presented by the

Inference Engine.

As evident from Table 5, the decision logic based on a rule

base makes a wise estimation of the SVM outputs, based on

which the Inference engine selects the category to which a

specific string of word belongs. The output of the system is thus

the final decision presented by the Inference engine. In case of a

multi-class problem, the IE will present the weighted decision

of both the classes.

Apart from 2892 regular titles that belonged to unique

categories, 250 additional titles were used, out of which 125

titles belonged to more than one category and the remaining

125 titles belonged to none of the six pre-specified categories.

For multi-category cases, titles like ‘Introduction to Engineer-

ing Mathematics and Calculus’ etc., were used where, clearly

the category belongs to both engineering (ENG) and

mathematics (MTH). In all the multi-class cases, the LS-

SVM based architecture detected the multiple classes

accurately, where more than one elements of the vector A

had value �0.5. For titles that belonged to neither categories, it

was found that the proposed LS-SVM classifier detected them

with a high degree of accuracy and all of the elements of the

vector A had value <0.5. Instead of using the threshold based

decision logic, if the maxima based decision logic was used, it

was observed that the ‘no category’ cases yielded specific

categories corresponding to the element that had the maximum

value, even though the maximum element value was below 0.3.

More over the other short coming of the maxima based decision
logic was the failure to detect multiple classes, in which case

even though two elements of the vector A had value greater than

0.5, but the maximum value was unique and the decision logic

inferred the class corresponding to the maximum element,

ignoring the next maximum element(s), even though they were

above the threshold value of 0.5. The threshold value of 0.5 for

the decision logic was obtained by trial and error, after

processing a large number of document titles, where the

obtained classes from the LS-SVM classifier were compared

against the pre-specified classes of the text materials.

Parallel to the LS-SVM classifier, a K-nearest neighbor and

Naı̈ve Bayesian classifier based algorithms were also imple-

mented for the purpose of the proposed text classification task.

Table 6 presents the classification accuracy obtained from the

implementation of them. LSI coefficients were used as the input

to the KNN and NB based classifiers. The value of K for the

KNN classifier was selected to be 28. This value was obtained

by implementing KNNs for different values of K and thus

optimizing the performance of the KNN classifier according to

the pre-specified classes of the text titles.

It can be observed from Table 6, that the LS-SVM based

classifier provided better accuracy than the remaining two. The

KNN, however provided better accuracy than NB based

classifier, in all the categories, but still the obtained accuracy

from LS-SVM classifier clearly claims, the superiority in the

performance of the LS-SVM based classification for the

proposed task of text classification.

6. Conclusion

This paper presents an LSI coefficient based LS-SVM

module, for text classification. With a corpus of 91,229 words,

the classification accuracy rate was fairly high with 99.9%

accuracy in classifying the titles. Table 5 depicts the different

stages of the proposed text classification module for only two

samples per category, but actually 1500 samples per category

(for six different categories) were used, which is equivalent to

9000 samples altogether. Thus 9000 samples were used for

testing and Table 6 depicts that the system efficiently classified

those samples with a high degree of accuracy. The overall

accuracy for classifying the different categories is presented in

Table 4. The high accuracy justifiably claims that LS-SVMs are

highly capable to perform text classification tasks. Text

documents are characterized by their high dimension and the

V. Mitra et al. / Applied Soft Computing xxx (2006) xxx–xxx 7

+ Models
sparse property. SVMs use over-fitting protection and they have

been proved to be well suited for both sparse and dense

problems, these attributes make them particularly well suited

for text classification. Previous works on text classification have

implemented neural networks and linear SVMs, where

recurrent neural networks and linear SVMs showed an accuracy

of 93.05% [2] and 97%, respectively. The precision rate of the

proposed system clearly outperforms the previous models.

Prior to our research, LS-SVMs with GRBF kernel and LSI

techniques have not been designed and implemented for a high

scale task of text categorization. The robustness of the proposed

system enables it to classify noisy text titles with a high degree

of precision. Scalability is one of the key issues concerning text

classification. The proposed classifier addresses classification

between six classes and it was observed that as the number of

classes was increased, the number of LSI coefficients also

increased, thus increasing the feature set resolution. Due to this,

for a small increase in the number of classes, no major deviation

from the obtained accuracy was noted. Future research should

be devoted to explore SVMs with other possible kernel

functions or Neuro-SVM based hybrid models that might act as

a better classifying agent. Future direction should also address

to increase the number of categories to a large extent to observe

the robustness and predictive accuracy of the system.

Acknowledgement

The authors would like to acknowledge Penrose Library,

University of Denver, for providing real world experimental

data.

References

[1] H. Schuetze, D.A. Hull, J.O. Pedersen, A comparison of classifiers and

document representations for the routing problem, in: Proceedings of the

Special Interest Group on Information Retrieval, SIGIR Forum; Seattle,

WA, The Association for Computing Machinery, New York, 1995 , pp.

229–237.

[2] S. Wermter, G. Arevian, C. Panchev, Recurrent neural network learning

for text routing, in: Proceedings of Ninth International Conference on

Artificial Neural Networks, vol. 2, ICANN 99, (1999), pp. 898–903.

[3] P.W. Foltz, W. Kintsch, T.K. Landauer, The measurement of textual

coherence with latent semantic analysis, Discourse Process. 25 (1998)

285–307.

[4] P.W. Foltz, Using latent semantic indexing for information filtering, in:

R.B. Allen (Ed.), Proceedings of the Conference on Office Information

Systems, Cambridge, MA, (1990), pp. 40–47.

[5] T.K. Landauer, P.W. Foltz, D. Laham, Introduction to latent semantic

analysis, Discourse Process. 25 (1998) 259–284.

[6] T.K. Landauer, S.T. Dumais, Solution to Plato’s problem: the latent

semantic analysis theory of acquisition, induction and representation of

knowledge, Psychol. Rev. 104 (2) (1977) 211–240.
[7] R. Bellegarda, A multi-span language modeling framework for large

vocabulary speech recognition, IEEE Trans. Speech Audio Process. 6

(1998) 456–467.

[8] S.R. Gunn, Support Vector Machines for Classification and Regression,

Technical Report, Department of Electronics and Computer Science,

University of Southampton, 1998.

[9] N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector

Machines, Cambridge University Press, 2000.

[10] T. Evgeniou, M. Pontil, T. Poggio, Regularization networks and support

vector machines, Advances in Computational Mathematics No. 1, vol. 13,

Springer Science+Business Media (formerly Kluwer Academic) Publish-

ers, 2000, pp. 1–50.

[11] B. Schölkopf, C. Burges, A. Smola, Advances in Kernel Methods–Support

Vector Learning, MIT press, 1998.

[12] B. Schölkopf, A.J. Smola, K.-R. Müller, Nonlinear component analysis as

a kernel eigen value problem, Neural Computation, vol. 10, MIT Press,

1998, pp. 1299–1319.

[13] J.A.K. Suykens, J. Vandewalle, Least square support vector machine

classifiers, Neural Process. Lett. 9 (3) (1999) 293–300.

[14] T. Van Gestel, J. Suykens, B. Baesens, S. Viaene, J. Vanthienen, G.

Dedene, B. De Moor, J. Vandewalle, Benchmarking least square support

vector machine classifiers, Machine Learning, vol. 54, Kluwer Academic

Publishers, 2001, pp. 5–32.

[15] V. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag,

New York, 1995.

[16] V. Vapnik, Statistical Learning Theory, John Wiley, New York, 1998.

[17] G. Wahba, Spline models for observational data, in: CBMS-NSF Regional

Conference Series in Applied Mathematics, vol. 59, SIAM, PA, 1990.

[18] N. Cristianini, J. Shawe-Taylor, H. Lodhi, Latent semantic kernels, J Intell.

Inform. Syst. 18 (2–3) (2002) 127–152.

[19] T. Joachims, Text categorization with support vector machines, in:

Proceedings of European Conference on Machine Learning ECML-98,

Springer, 1998, pp. 137–142.

[20] Y. Yang, X. Liu, A re-examination of text categorization methods, in: The

22nd Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval (SIGIR’99), Berkley, CA, USA,

(1999), pp. 42–49.

[21] Y. Yang, An evaluation of statistical approaches to text categorization,

Information Retrieval, Issue 1–2, vol. 1, Kluwer Academic Publishers,

1999, pp. 69–90.

[22] K. Nigam, A.K. McCallum, S. Thrun, T.M. Mitchell, Text classification

from labeled and unlabeled documents using EM, Machine Learning, No.

3(2), vol. 39, Kluwer Academic Publishers, 2000, pp. 103–104.

[23] D. Lewis, M. Ringuette, A comparison of two learning algorithms for text

categorization, in: Proceedings of the Third Annual Symposium on

Document Analysis and Information Retrieval, 1994, pp. 81–93.

[24] Z. Zheng, X. Wu, S. Srihari, Feature selection for text categorization on

imbalanced data, SIGKDD Explor. 6 (1) (2004) 80–89.

[25] T. Van Gestel, J.A.K. Suykens, B. De Moor, J. Vandewalle, Bayesian

inference for LS-SVMs on large data sets using the Nyström method, in:

International Joint Conference on Neural Networks (WCCI-IJCNN 2002),

Honolulu, USA, (2002), pp. 2779–2784.

[26] T. Van Gestel, J.A.K. Suykens, B. De Moor, J. Vandewalle, Automatic

relevance determination for least squares support vector machine classi-

fiers, in: Proceedings of the European Symposium on Artificial Neural

Networks (ESANN 2001), Bruges, Belgium, (2001), pp. 13–18.

[27] T. Joachims, Text categorization with support vector machines: learning

with many relevant features, in: Proceedings of the 10th European

Conference on Machine Learning, ECML-98, No. 1398, Springer Verlag,

Heidelberg, DE, (1998), pp. 137–142.

	Text classification: A least square support vector machine approach
	Introduction
	Latent semantic indexing
	Support vector machines (SVM)
	Kernel functions
	Least square-SVM
	Why LS-SVM with LSI?
	K-nearest neighbor classification
	Naïve Bayes classifier

	Text classification
	Simulation results
	Conclusion
	Acknowledgement
	References

